
Lecture 23 - Buoyancy, Fluids in motion

Buoyancy

Archimedes’ principle: The buoyancy force (B) acting on a body is the
weight of fluid which that body dispaces.

For example let’s calculate the buoyancy force of the human body in
air. The volume of the human body is rougly V ≈ 2 ∗ 0.2 ∗ 0.5 = 0.2m3.
The density of air at sea level is approximately ρair = 1.25kg/m3, so that
the buoyancy for on the human body in air is about B = ρV g ≈ 2.45N .
This means that when we weigh ourselves on the scales, the weight that the
scales measure is actually a little bit less than our true weight. The error is
δw ≈ 0.25kg or about 1/2 lb. This is an example of the effect of a fluid on
the measured weight of an object. We shall look at that more closely below.
There are two general cases of an object in a fluid: If it is submerged, or if
it is floating.
Submerged object

If an object of volume mass M and volume V is submerged in a fluid,
then the net force on the object is given by,

Fnet = Mg − B = ρfluidV g − Mg = (ρfluid − ρobject)V g (1)

If the density of the object ρobject = M/V is greater then the density of fluid
ρfluid, then the force is negative and the object sinks, while of the density of
the object is lower than that of the fluid, we have to impose a force on it to
keep it submerged.

Lets consider the case where the density of the object is greater than the
density of the fluid in which it is submerged. Another way of thinking about
this is illustrated in the calculation we did above for the human body in air.
That is, we can weight of the object is lower in the fluid than in vaccuum, and
the observed weight is just Fnet/g. For example, consider weighing a piece
of gold of volume V in air and then weigh the same piece of gold in water.
Since gold has a density of 19.3 ∗ 103kg/m3 (so that it has a specific gravity
of 19.3), when we weigh it in air, the scales read win air = (ρg − ρa)V g, while
if we weigh it in water, win water = (ρg − ρw)V g. Note also that if we take
the ratio of these two quantities, we get,

win air

win water

=
ρg − ρa

ρg − ρw

=
19.3 − .00125

19.3 − 1
≈

19.3

18.3
(2)
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This equation may be solved for ρg. In general if we have a material of un-
known density, we can find its density by doing a measurement in two fluids
of known density and using an equation of this sort.

Floating objects
If an object has a density less than the fluid in which it is placed, then it

floats (e.g. ice in water). In that case, the volume of water displaced has a
mass equal to th e mass of the object, so that,

Mg = ρobjectV g = ρfluidVsubmergedg (3)

where Vsubmerged is the volume of the object which is under the surface of the
fluid. We then have,

ρobject

ρfluid

=
Vsubmerged

Vobject

(4)

The right hand side is the fraction of the volume of the object which is
submerged. Lets do the calculation for an iceberg. In that case we have
ρobject = ρice = 920kg/m3 (note that 103kg/m3 = 1g/cc = 1g/ml). We thus
find that for an iceberg floating in water,

Vsubmerged

Viceberg

= 0.92 (5)

which means that 92 percent of an iceberg is below the surface of the water.
For that reason sailing a ship through waters containing icebergs is extremely
dangerous unless the ship’s hull can withstand an impact with one.

Fluids in motion

I. Continuity equation(mass conservation): What goes in comes out!
We have all been in rivers where there are some parts which flow swiftly

and others where there are deep quiet pools. How does that work?? Clearly
if no water leaks out of the river and there is no additional water entering the
river, the water that goes in has to come out. The simple statement that in a
fluid flow, what goes in has to come out is a “conservation law”. In the case
of water we can say the the mass flow is conserved. The mass of water which
flows across a dam spillway is given by, Aρv (which has units of mass/time),
where v is the velocity of the flow. In general a flow is something per unit
time, for example current is charge per unit time, power is energy per unit
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time etc. As remarked above, what flows into the dam has to flow out of the
dam, across the spillway. In fact if we measure the flow across any surface
crossing the river we must have the same mass flow, which may be written
as,

A1ρ1v1 = A2ρ2v2. (6)

This equation is called a continuity equation and it ensures that mass flow
is conserved. Water and many other dense fluids are nearly incompressible,
so that ρ1 = ρ2, so that the continuity equation reduces to A1v1 = A2v2.
Physically this means that narrow constrictions in the river have to have fast
flow and wide open parts of the river have slow flow.

Bernoulli’s (1700-1782) equation: Conservation of Work/Energy
Consider a pipe through which an incompressible fluid is flowing, in a

steady flow (no turbulence). Consider a segment of the fluid, at two times
t and t′. During the time interval ∆t = t′

− t, a small volume of fluid V is
moved along the pipe. At one end of the fluid segment, the pipe has area
A1, the fluid is flowing with velocity v1, the pressure is P1 and the fluid
segment moves a distance ∆x1 during time interval ∆t. At the other end
of the segment of fluid there is a second set of values of these quantities,
A2, v2, P2, ∆x2. Since the fluid is incompressible, the density is a constant
and we have A1∆x1 = A2∆x2 = V .

Now consider the work/energy theorem applied to the fluid segment. The
pressure P1 does work to push the fluid segment through the pipe, while the
pressure P2 resists the flow, the external work is then,

We = F1∆x1 − F2∆x2 = P1A1∆x1 − P2A2∆x2 = (P1 − P2)V (7)

The change in kinetic energy is,

∆KE =
1

2
m2v

2

2
−

1

2
m1v

2

1
=

1

2
ρV (v2

2
− v2

1
) (8)

The change in gravitational potential energy is,

∆PE = m2gy2 − m1gy1 = ρV g(y2 − y1) (9)

Using the work-energy theorem, ie We = ∆KE +∆PE +Edis, and assuming
that the dissipation is zero, we find that,

P1 +
1

2
ρv2

1
+ ρgy1 = P2 +

1

2
ρv2

2
+ ρgy2 (10)
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This is Bernoulli’s equation, which is often written as,

P +
1

2
ρv2 + ρgy = constant (11)

As an example consider airflow around an airplane wing. The airflow
over the top part of the wing has speed v2 = 245m/s, while the airflow
over the bottom of the wing has speed v1 = 222m/s. The density of air is
approximately ρ = 1.29kg/m3. Since the wing is quite thin, the change in
gravitational PE is negligible, so we have,

P2 − P1 = −

1

2
∗ 1.29 ∗ (2452

− 2222) = 6.93 ∗ 103Pa (12)

Recall that atmospheric pressure at sea level is, on average, 1.01 ∗ 105Pa, so
that the flow induced pressure difference is quite a surprisingly large. The
fact that it is negative indicates that the pressure is LOWER on the high
velocity side of the wing. Airplane airfoils are designed to produce lift, so
the high velocity side of the flow is on the upper side of the wind. Racecars
on the other hand want to grip the road so their airfoils are designed to
have the faster airflow on the lower side of the airfoil. We can estimate the
amount of mass that the pressure above can lift through F = P ∗Area. The
larger the wing area, the larger the lift. A Boeing 747-400 has a wing area of
A = 541m2, so that the lift force at these airspeeds and at this air density is
F = 3, 740, 130N . This force can lift a mass of F/g = 382, 174kg. The mass
of the plane itself is roughly 150, 000kg empty, and it carries 63, 500 gallons
of fuel on long flights, eg to Australia. The altitude to which a plane can
fly is limited by the air density. The air density at 30, 000ft ≈ 10, 000m is
about 1/3 that at sea level, so the lift is also reduced by this amount. Note
that high velocity implies low pressure, IN the fluid. This is counterintuitive
as we know that if a high velocity fluid hits us (e.g. a water canon), then the
pressure on us is large. We have to carefully distinguish between the pressure
in the fluid as predicted by Bernoulli and the pressure on a target which is
completely different.
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